TRAUMA CRANEOENCEFÁLICO: FISIOPATOLOGÍA Y MOLÉCULAS PROTECTORAS

Autores/as

  • Imara Chaverra Torres .
  • Lina Becerra-Hernández Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali

DOI:

https://doi.org/10.51437/nj.v29i3.394

Palabras clave:

trauma craneoencefálico, tce, Terbutilhidroquinona, fisiopatología, Proteína Precursora Amiloide, Factor Nuclear Eritroide Similar al Factor 2

Resumen

El trauma craneoencefálico es una patología que se caracteriza por presentar alguna alteración neurológica secundaria a una lesión traumática producida por la liberación de una fuerza externa, bien sea, química, mecánica, térmica, eléctrica, radiante o una mezcla de ellas; ocasionando daño estructural en la bóveda craneana y su contenido. Presenta diversas clasificaciones: según el mecanismo del trauma, según la severidad del trauma, o conforme a la correlación anatomopatológica. El trauma afecta a más de 60 millones de personas cada año en todo el mundo, mayoritariamente en países con bajos y medianos ingresos en los que ocurre el 90% de los casos, siendo los accidentes de tránsito el principal causal de la morbimortalidad asociada. Fisiopatológicamente se identifican la injuria primaria y secundaria. Ante la gravedad del TCE este artículo plantea describir algunas investigaciones sobre posibles blancos terapéuticos que pudieran mejorar la sobrevida de los pacientes o aminorar las lesiones subsecuentes del trauma, entre ellas la Proteína Precursora Amiloide, el Factor Nuclear Eritroide Similar al Factor 2 y la Terbutilhidroquinona. En este documento se abordan estas moléculas en el contexto del trauma, según la literatura desde 1990 hasta la actualidad, y se excluyeron documentos relacionados con la población pediátrica y obstétrica. Las tres moléculas tienen evidencia preclínica que las propone como potenciales blancos para intervención en trauma craneoencefálico, actuando sobre puntos clave de la fisiopatología del trauma.

Citas

Ministerio de Salud y Protección Social, Rubiano Escobar AM et al. Guía

colombiana de práctica clínica para el diagnóstico y tratamiento de

pacientes adultos con trauma craneoencefálico severo [Internet].

Ministerio de Salud y Protección Social. 2016 [citado 2022Oct18].

Disponible en

https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/C

A/gpc-profesionales-completa-adultos-trauma-craneoencefalicosevero.pdf

Centers for Disease Control and Prevention. . Report to Congress on

Traumatic Brain Injury in the United States: Epidemiology and

Rehabilitation. [Internet]. 2015 [citado 2022Oct26]. Disponible en:

https://www.cdc.gov/traumaticbraininjury/pdf/tbi_report_to_congress_e

pi_and_rehab-a.pdf?_hsenc=p2ANqtz-

ezXS6LlptZETVIRCTLawzpF2Zh_QbH8sKPHJXRI45yicklm4DOLaP_VlRazO

wEVBIIwQq94BCinpyTUB4EWNgAACHQ&_hsmi=67061850

Ng S and Lee A. Traumatic brain injuries: Pathophysiology and potential

therapeutic targets [Internet]. Frontiers. Frontiers; 2019 [citado

Oct16]. Disponible en:

https://www.frontiersin.org/articles/10.3389/fncel.2019.00528/full

Gabbe BJ, Cameron PA, Finch CF. The status of the Glasgow Coma Scale.

Emergency Medicine Australasia. 2003Jul25;15(4):353–60.

Patil A, Srinivasarangan M, Javali RH, LNU K, LNU S, LNU S. Comparison of

Injury Severity Score, new injury severity score, revised trauma score and

trauma and injury severity score for mortality prediction in elderly trauma

patients. Indian Journal of Critical Care Medicine. 2019Feb23;23(2):73–7.

Lesko MM, Woodford M, White L, O'Brien SJ, Childs C, Lecky FE. Using

abbreviated injury scale (AIS) codes to classify computed tomography (CT)

features in the marshall system. BMC Medical Research Methodology.

;10(1).

GEO-TBI. GEO-TBI [Internet]. Global Health Research Group on

Neurotrauma. 2023 [citado 2023Feb16]. Disponible en:

https://geotbi.org/

Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung Y-C, Punchak M, et al.

Estimating the global incidence of traumatic brain injury. Journal of

Neurosurgery. 2018Apr27;130(4):1080–97.

Dunne J, Quiñones-Ossa GA, Still EG, Suarez MN, González-Soto JA, Vera

DS, et al. The epidemiology of traumatic brain injury due to traffic

accidents in Latin America: A narrative review. Journal of Neurosciences

in Rural Practice. 2020Apr2;11:287–90.

WHO. Global status report on road safety 2015 [Internet]. World Health

Organization. World Health Organization; 2015 [citado 2022Oct23].

Disponible en: https://www.afro.who.int/publications/global-statusreport-road-safety-2015

Skandsen T, Kvistad KA, Solheim O, Strand IH, Folvik M, Vik A. Prevalence

and impact of diffuse axonal injury in patients with moderate and severe

head injury: A cohort study of early magnetic resonance imaging findings

and 1-year outcome. Journal of Neurosurgery. 2010Sep;113(3):556–63.

Clifton GL, Coffey CS, Fourwinds S, Zygun D, Valadka A, Smith KR, et al.

Early induction of hypothermia for evacuated intracranial hematomas: A

post hoc analysis of two clinical trials. Journal of Neurosurgery.

;117(4):714–20.

Saatman, K. E., Duhaime, A. C., Bullock, R., Maas, A. I., Valadka, A., and

Manley, G. T. (2008). Classification of traumatic brain injury for targeted

therapies. J. Neurotrauma 25, 719–738. doi: 10.1089/neu.2008.0586

Chamoun, R., Suki, D., Gopinath, S. P., Goodman, J. C., and Robertson, C.

(2010). Role of extracellular glutamate measured by cerebral

microdialysis in severe traumatic brain injury. J. Neurosurg. 113, 564–570.

doi: 10.3171/2009.12.jns09689

Giménez Martín C, Zafra Gómez F, Aragón Rueda C. Fisiopatología de los

transportadores de glutamato y de glicina: Nuevas Dianas Terapéuticas.

Revista de Neurología. 2018Dicc16;67(12):491.

Luo, P., Fei, F., Zhang, L., Qu, Y., and Fei, Z. (2011). The role of glutamate

receptors in traumatic brain injury: implications for postsynaptic density

in pathophysiology. Brain Res. Bull. 85, 313–320. doi:

1016/j.brainresbull.2011.05.004

Niswender CM, Conn PJ. Metabotropic glutamate receptors: Physiology,

pharmacology, and disease. Annual Review of Pharmacology and

Toxicology. 2010;50(1):295–322.

Weber JT. Altered calcium signaling following traumatic brain injury.

Frontiers in Pharmacology. 2012Mar12;3.

Pérez-Burgos, Alamilla. El fosfatidilinositol-4,5-bifosfato y sus acciones

sobre los canales iónicos. Vol.21, No.2. 2010Ago25.

García N, García JJ, Correa F, Chávez E. The permeability transition pore as

a pathway for the release of mitochondrial DNA. Life Sciences.

Apr29;76(24):2873–80.

Hall, E. D., Detloff, M. R., Johnson, K., and Kupina, N. C. (2004).

Peroxynitrite-mediated protein nitration and lipid peroxidation in a

mouse model of traumatic brain injury. J. Neurotrauma 21, 9–20. doi:

1089/089771504772695904

Singh, I. N., Sullivan, P. G., Deng, Y., Mbye, L. H., and Hall, E. D. (2006). Time

course of post-traumatic mitochondrial oxidative damage and

dysfunction in a mouse model of focal traumatic brain injury: implications

for neuroprotective therapy. J. Cereb. Blood Flow Metab. 26, 1407–1418.

doi: 10.1038/sj.jcbfm.9600297

Ansari, M. A., Roberts, K. N., and Scheff, S. W. (2008a). Oxidative stress and

modification of synaptic proteins in hippocampus after traumatic brain

injury. Free Radic. Biol. Med. 45, 443–452. doi:

1016/j.freeradbiomed.2008.04.038

Lotocki, G., de Rivero Vaccari, J. P., Perez, E. R., Sanchez-Molano, J.,

Furones-Alonso, O., Bramlett, H. M., et al. (2009). Alterations in bloodbrain barrier permeability to large and small molecules and leukocyte

accumulation after traumatic brain injury: effects of post-traumatic

hypothermia. J. Neurotrauma 26, 1123–1134. doi: 10.1089/neu.2008.0802

Semple, B. D., Bye, N., Rancan, M., Ziebell, J. M., and Morganti-Kossmann,

M. C. (2010). Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence

from severe TBI patients and CCL2−/− mice. J. Cereb. Blood Flow Metab. 30,

–782. doi: 10.1038/jcbfm.2009.262

Morganti-Kossmann, M. C., Rancan, M., Stahel, P. F., and Kossmann, T.

(2002). Inflammatory response in acute traumatic brain injury: a doubleedged sword. Cur. Opin. Crit. Care 8, 101–105. doi: 10.1097/00075198-

-00002

Mujica B M, González T G, Larraín G C, Miller T P, Castoldi L F. Resonancia

magnética cerebral en Daño axonal DIFUSO. Revista chilena de radiología.

;9(4).

Martínez J, Castro M. El Yin y el yang de la astrogliosis reactiva [Internet].

Ciencia UANL. 2021 [citado 2022Oct26]. Disponible en:

https://cienciauanl.uanl.mx/?p=10864

Perreau VM, Orchard S, Adlard PA, Bellingham SA, Cappai R, Ciccotosto

GD, et al. A domain level interaction network of amyloid precursor protein

and AΒ of alzheimer's disease. PROTEOMICS. 2010;10(12):2377–95.

Romero Tirado, M.A. et al. Proteína precursora del beta-amiloide (β-App)

y daño axonal difuso tras un traumatismo craneoencefálico: un punto de

vista forense. Med. leg. Costa Rica [online]. 2022, vol.39, n.2, pp.37-50. ISSN

-5287.

Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. The

neuroprotective properties of the amyloid precursor protein following

traumatic brain injury. Aging and disease. 2016Mar15;7(2):163.

Prox J, Rittger A, Saftig P. Physiological functions of the amyloid precursor

protein secretases ADAM10, BACE1, and Presenilin. Experimental Brain

Research. 2011Nov27;217(3-4):331–41.

Hiltunen M, van Groen T, Jolkkonen J. Functional roles of amyloid-β

protein precursor and amyloid-β peptides: Evidence from experimental

studies. Journal of Alzheimer's Disease. 2009May4;18(2):401–12.

Hornsten, A., Lieberthal, J., Fadia, S., Malins, R., Ha, L., Xu, X., et al. (2007).

APL-1, a Caenorhabditis elegans protein related to the human β-amyloid

precursor protein, is essential for viability. Proc. Natl. Acad. Sci. U S A 104,

–1976. doi: 10.1073/pnas.0603997104

Bourdet, I., Preat, T., and Goguel, V. (2015). The full-length form of the

Drosophila amyloid precursor protein is involved in memory formation. J.

Neurosci. 35, 1043–1051. doi: 10.1523/JNEUROSCI.2093-14.2015

Weyer, S. W., Klevanski, M., Delekate, A., Voikar, V., Aydin, D., Hick, M., et

al. (2011). APP and APLP2 are essential at PNS and CNS synapses for

transmission, spatial learning and LTP. EMBO J. 30, 2266–2280. doi:

1038/emboj.2011.119

Caldwell, J. H., Klevanski, M., Saar, M., and Müller, U. C. (2013). Roles of the

amyloid precursor protein family in the peripheral nervous system. Mech.

Dev. 130, 433–446. doi: 10.1016/j.mod.2012.11.001

Hefter D, Draguhn A. App as a protective factor in acute neuronal insults.

Frontiers in Molecular Neuroscience. 2017Feb2;10.

Otsuka, N., Tomonaga, M., and Ikeda, K. (1991). Rapid appearance of β-

amyloid precursor protein immunoreactivity in damaged axons and

reactive glial cells in rat brain following needle stab injury. Brain Res. 568,

–338. doi: 10.1016/0006-8993(91)91422-W

Lewén, A., Li, G. L., Nilsson, P., Olsson, Y., and Hillered, L. (1995). Traumatic

brain injury in rat produces changes of beta-amyloid precursor protein

immunoreactivity. Neuroreport. 6, 357–360. doi: 10.1097/00001756-

-00032

Lewén, A., Li, G. L., Olsson, Y., and Hillered, L. (1996). Changes in

microtubule-associated protein 2 and amyloid precursor protein

immunoreactivity following traumatic brain injury in rat: influence of MK-

treatment. Brain Res. 719, 161–171. doi: 10.1016/0006-

(96)00081-9

Thornton E, Vink R, Blumbergs PC, Van Den Heuvel C. Soluble amyloid

precursor protein α reduces neuronal injury and improves functional

outcome following diffuse traumatic brain injury in rats. Brain Research.

May15;1094(1):38–46.

Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, van den Heuvel

C. SAPPα rescues deficits in amyloid precursor protein knockout mice

following focal traumatic brain injury. Journal of Neurochemistry.

Apr20;122(1):208–20.

Ma T, Zhao YB, Kwak Y-D, Yang Z, Thompson R, Luo Z, et al. Statin's

excitoprotection is mediated by Sapp and the subsequent attenuation of

calpain-induced truncation events, likely via rho-rock signaling. The

Journal of Neuroscience. 2009Sep9;29(36):11226–36.

Perry DC, Sturm VE, Peterson MJ, Pieper CF, Bullock T, Boeve BF, et al.

Association of traumatic brain injury with subsequent neurological and

psychiatric disease: A meta-analysis. Journal of Neurosurgery.

Aug28;124(2):511–26.

Traumatic brain injury (TBI) [Internet]. Alzheimer's Disease and Dementia.

[citado 2023Feb24]. Disponible en: https://www.alz.org/alzheimersdementia/what-is-dementia/related_conditions/traumatic-braininjury#:~:text=The%20key%20studies%20showing%20an,a%204.5%20ti

mes%20greater%20risk

Cuamani MG, García AON. El papel emergente del factor nuclear eritroide

Nrf2 en la neuroprotección mediada por astrocitos. Rev Mex Neuroci.

;17(5):49-59.

Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress,

inflammation, and cancer: How are they linked? Free Radical Biology and

Medicine. 2010Sep16;49(11):1603–16.

Zhang L, Wang H. Targeting the NF-E2-related factor 2 pathway: A novel

strategy for traumatic brain injury. Molecular Neurobiology.

Feb21;55(2):1773–85.

Jin W, Wang H, Yan W, Zhu L, Hu Z, Ding Y, et al. Role of Nrf2 in protection

against traumatic brain injury in mice. Journal of Neurotrauma.

Feb5;26(1):131–9.

Lu X-Y, Wang H-dong, Xu J-G, Ding K, Li T. Pretreatment with tertbutylhydroquinone attenuates cerebral oxidative stress in mice after

traumatic brain injury. Journal of Surgical Research.

May1;188(1):206–12.

Shu L, Wang C, Wang J, Zhang Y, Zhang X, Yang Y, et al. The

neuroprotection of hypoxic preconditioning on rat brain against

traumatic brain injury by up-regulated transcription factor Nrf2 and HO-

expression. Neuroscience Letters. 2016Jan6;611:74–80.

Zhao J, Moore AN, Redell JB, Dash PK (2007) Enhancing expression of Nrf2-

driven genes protects the blood brain barrier afterbrain injury. The

Journal of neuroscience : the official journal of the Society for

Neuroscience 27:10240–10248

Xu J, Wang H, Ding K, Zhang L, Wang C, Li T, Wei W, Lu X (2014) Luteolin

provides neuroprotection in models of traumatic brain injury via the Nrf2-

ARE pathway. Free Radic Biol Med 71: 186–19

National Center for Biotechnology Information. Tert-butylhydroquinone

[Internet]. PubChem Compound Database. U.S. National Library of

Medicine; 2023 [citado 2023Feb23]. Disponible en:

https://pubchem.ncbi.nlm.nih.gov/compound/tert-Butylhydroquinone

Khezerlou A, Akhlaghi Apouya, Alizadeh AM, Dehghan P, Maleki P.

Alarming impact of the excessive use of tert-butylhydroquinone in food

products: A narrative review. Toxicology Reports. 2022May2;9:1066–75.

Tert butylhydroquinone [Internet]. Tert Butylhydroquinone - an overview

| ScienceDirect Topics. 2002 [citado 2023Feb22]. Disponible en:

https://www.sciencedirect.com/topics/medicine-and-dentistry/tertbutylhydroquinone

Jin W, Kong J, Wang H, Wu J, Lu T, Jiang J, et al. Protective effect of tertbutylhydroquinone on cerebral inflammatory response following

traumatic brain injury in mice. Injury. 2011Apr3;42(7):714–8.

Johnson DA, Andrews GK, Xu W, Johnson JA. Activation of the antioxidant

response element in primary cortical neuronal cultures derived from

transgenic reporter mice. Journal of Neurochemistry.

Jun6;81(6):1233–41.

Li J, Johnson D, Calkins M, Wright L, Svendsen C, Johnson J. Stabilization of

NRF2 by TBHQ confers protection against oxidative stress-induced cell

death in human neural stem cells. Toxicological Sciences.

Feb3;83(2):313–28.

Shih AY, Li P, Murphy TH. A small-molecule-inducible NRF2-mediated

antioxidant response provides effective prophylaxis against cerebral

ischemiain vivo. The Journal of Neuroscience. 2005;25(44):10321–35.

Wang Z, Ji C, Wu L, Qiu J, Li Q, Shao Z, et al. Tert-butylhydroquinone

alleviates early brain injury and cognitive dysfunction after experimental

subarachnoid hemorrhage: Role of KEAP1/Nrf2/Are pathway. PLoS ONE.

May21;9(5).

Zhang Z-W, Liang J, Yan J-X, Ye Y-C, Wang J-J, Chen C, et al. TBHQ improved

neurological recovery after traumatic brain injury by inhibiting the

overactivation of astrocytes. Brain Research. 2020;1739:146818.

Descargas

Publicado

2023-11-10

Cómo citar

Chaverra Torres, I., & Becerra-Hernández, L. (2023). TRAUMA CRANEOENCEFÁLICO: FISIOPATOLOGÍA Y MOLÉCULAS PROTECTORAS. Neurociencias Journal, 29(3), 68–89. https://doi.org/10.51437/nj.v29i3.394

Número

Sección

Artículo de revisión